Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 300
Filtrar
1.
EMBO Rep ; 25(3): 1233-1255, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38413732

RESUMO

Accumulation of amyloid-beta (Aß) can lead to the formation of aggregates that contribute to neurodegeneration in Alzheimer's disease (AD). Despite globally reduced neural activity during AD onset, recent studies have suggested that Aß induces hyperexcitability and seizure-like activity during the early stages of the disease that ultimately exacerbate cognitive decline. However, the underlying mechanism is unknown. Here, we reveal an Aß-induced elevation of postsynaptic density protein 95 (PSD-95) in cultured neurons in vitro and in an in vivo AD model using APP/PS1 mice at 8 weeks of age. Elevation of PSD-95 occurs as a result of reduced ubiquitination caused by Akt-dependent phosphorylation of E3 ubiquitin ligase murine-double-minute 2 (Mdm2). The elevation of PSD-95 is consistent with the facilitation of excitatory synapses and the surface expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors induced by Aß. Inhibition of PSD-95 corrects these Aß-induced synaptic defects and reduces seizure activity in APP/PS1 mice. Our results demonstrate a mechanism underlying elevated seizure activity during early-stage Aß pathology and suggest that PSD-95 could be an early biomarker and novel therapeutic target for AD.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Animais , Camundongos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , Densidade Pós-Sináptica/metabolismo , Densidade Pós-Sináptica/patologia , Receptores de AMPA/metabolismo , Convulsões
2.
Mol Cell ; 84(2): 309-326.e7, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38096828

RESUMO

Membraneless organelles formed by phase separation of proteins and nucleic acids play diverse cellular functions. Whether and, if yes, how membraneless organelles in ways analogous to membrane-based organelles also undergo regulated fusion and fission is unknown. Here, using a partially reconstituted mammalian postsynaptic density (PSD) condensate as a paradigm, we show that membraneless organelles can undergo phosphorylation-dependent fusion and fission. Without phosphorylation of the SAPAP guanylate kinase domain-binding repeats, the upper and lower layers of PSD protein mixtures form two immiscible sub-compartments in a phase-in-phase organization. Phosphorylation of SAPAP leads to fusion of the two sub-compartments into one condensate accompanied with an increased Stargazin density in the condensate. Dephosphorylation of SAPAP can reverse this event. Preventing SAPAP phosphorylation in vivo leads to increased separation of proteins from the lower and upper layers of PSD sub-compartments. Thus, analogous to membrane-based organelles, membraneless organelles can also undergo regulated fusion and fission.


Assuntos
Condensados Biomoleculares , Densidade Pós-Sináptica , Animais , Fosforilação , Densidade Pós-Sináptica/metabolismo , Fenômenos Fisiológicos Celulares , Ligação Proteica , Organelas/metabolismo , Mamíferos
3.
Sci Rep ; 13(1): 22027, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38086879

RESUMO

Brain-enriched guanylate kinase-associated protein (BEGAIN) is highly enriched in the post-synaptic density (PSD) fraction and was identified in our previous study as a protein associated with neuropathic pain in the spinal dorsal horn. PSD protein complexes containing N-methyl-D-aspartate receptors are known to be involved in neuropathic pain. Since these PSD proteins also participate in learning and memory, BEGAIN is also expected to play a crucial role in this behavior. To verify this, we first examined the distribution of BEGAIN in the brain. We found that BEGAIN was widely distributed in the brain and highly expressed in the dendritic regions of the hippocampus. Moreover, we found that BEGAIN was concentrated in the PSD fraction of the hippocampus. Furthermore, immunoelectron microscopy confirmed that BEGAIN was localized at the asymmetric synapses. Behavioral tests were performed using BEGAIN-knockout (KO) mice to determine the contribution of BEGAIN toward learning and memory. Spatial reference memory and reversal learning in the Barns circular maze test along with contextual fear and cued fear memory in the contextual and cued fear conditioning test were significantly impaired in BEGAIN-KO mice compared to with those in wild-type mice. Thus, this study reveals that BEGAIN is a component of the post-synaptic compartment of excitatory synapses involved in learning and memory.


Assuntos
Neuralgia , Densidade Pós-Sináptica , Camundongos , Animais , Densidade Pós-Sináptica/metabolismo , Encéfalo/metabolismo , Hipocampo/metabolismo , Camundongos Knockout , Aprendizagem em Labirinto , Guanilato Quinases/metabolismo , Neuralgia/metabolismo
4.
Nat Commun ; 14(1): 6839, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891164

RESUMO

Alzheimer's disease begins with mild memory loss and slowly destroys memory and thinking. Cognitive impairment in Alzheimer's disease has been associated with the localization of the microtubule-associated protein Tau at the postsynapse. However, the correlation between Tau at the postsynapse and synaptic dysfunction remains unclear. Here, we show that Tau arrests liquid-like droplets formed by the four postsynaptic density proteins PSD-95, GKAP, Shank, Homer in solution, as well as NMDA (N-methyl-D-aspartate)-receptor-associated protein clusters on synthetic membranes. Tau-mediated condensate/cluster arrest critically depends on the binding of multiple interaction motifs of Tau to a canonical GMP-binding pocket in the guanylate kinase domain of PSD-95. We further reveal that competitive binding of a high-affinity phosphorylated peptide to PSD-95 rescues the diffusional dynamics of an NMDA truncated construct, which contains the last five amino acids of the NMDA receptor subunit NR2B fused to the C-terminus of the tetrameric GCN4 coiled-coil domain, in postsynaptic density-like condensates/clusters. Taken together, our findings propose a molecular mechanism where Tau modulates the dynamic properties of the postsynaptic density.


Assuntos
Doença de Alzheimer , Peptídeos e Proteínas de Sinalização Intracelular , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Densidade Pós-Sináptica/metabolismo , N-Metilaspartato , Proteínas de Membrana/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
5.
Nature ; 622(7981): 112-119, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37704727

RESUMO

The molecular mechanisms and evolutionary changes accompanying synapse development are still poorly understood1,2. Here we generate a cross-species proteomic map of synapse development in the human, macaque and mouse neocortex. By tracking the changes of more than 1,000 postsynaptic density (PSD) proteins from midgestation to young adulthood, we find that PSD maturation in humans separates into three major phases that are dominated by distinct pathways. Cross-species comparisons reveal that human PSDs mature about two to three times slower than those of other species and contain higher levels of Rho guanine nucleotide exchange factors (RhoGEFs) in the perinatal period. Enhancement of RhoGEF signalling in human neurons delays morphological maturation of dendritic spines and functional maturation of synapses, potentially contributing to the neotenic traits of human brain development. In addition, PSD proteins can be divided into four modules that exert stage- and cell-type-specific functions, possibly explaining their differential associations with cognitive functions and diseases. Our proteomic map of synapse development provides a blueprint for studying the molecular basis and evolutionary changes of synapse maturation.


Assuntos
Proteômica , Sinapses , Adolescente , Animais , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Camundongos , Adulto Jovem , Cognição/fisiologia , Espinhas Dendríticas , Idade Gestacional , Macaca , Neurônios/metabolismo , Densidade Pós-Sináptica/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Transdução de Sinais , Especificidade da Espécie , Sinapses/metabolismo , Sinapses/fisiologia
6.
Elife ; 122023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37318128

RESUMO

The volume and the electric strength of an excitatory synapse is near linearly correlated with the area of its postsynaptic density (PSD). Extensive research in the past has revealed that the PSD assembly directly communicates with actin cytoskeleton in the spine to coordinate activity-induced spine volume enlargement as well as long-term stable spine structure maintenance. However, the molecular mechanism underlying the communication between the PSD assembly and spine actin cytoskeleton is poorly understood. In this study, we discover that in vitro reconstituted PSD condensates can promote actin polymerization and F-actin bundling without help of any actin regulatory proteins. The Homer scaffold protein within the PSD condensates and a positively charged actin-binding surface of the Homer EVH1 domain are essential for the PSD condensate-induced actin bundle formation in vitro and for spine growth in neurons. Homer-induced actin bundling can only occur when Homer forms condensate with other PSD scaffold proteins such as Shank and SAPAP. The PSD-induced actin bundle formation is sensitively regulated by CaMKII or by the product of the immediate early gene Homer1a. Thus, the communication between PSD and spine cytoskeleton may be modulated by targeting the phase separation of the PSD condensates.


Assuntos
Actinas , Proteínas do Tecido Nervoso , Actinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Densidade Pós-Sináptica/metabolismo , Células Cultivadas , Neurônios/fisiologia , Proteínas de Arcabouço Homer/metabolismo , Sinapses/fisiologia
7.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37108454

RESUMO

The post-synaptic density protein 95 (PSD95) is a crucial scaffolding protein participating in the organization and regulation of synapses. PSD95 interacts with numerous molecules, including neurotransmitter receptors and ion channels. The functional dysregulation of PSD95 as well as its abundance and localization has been implicated with several neurological disorders, making it an attractive target for developing strategies able to monitor PSD95 accurately for diagnostics and therapeutics. This study characterizes a novel camelid single-domain antibody (nanobody) that binds strongly and with high specificity to rat, mouse, and human PSD95. This nanobody allows for more precise detection and quantification of PSD95 in various biological samples. We expect that the flexibility and unique performance of this thoroughly characterized affinity tool will help to further understand the role of PSD95 in normal and diseased neuronal synapses.


Assuntos
Neurônios , Sinapses , Ratos , Camundongos , Humanos , Animais , Proteína 4 Homóloga a Disks-Large/metabolismo , Sinapses/metabolismo , Neurônios/metabolismo , Densidade Pós-Sináptica/metabolismo , Canais Iônicos/metabolismo , Fatores de Transcrição/metabolismo
8.
Cells ; 12(4)2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36831241

RESUMO

Emerging evidence from genomics, post-mortem, and preclinical studies point to a potential dysregulation of molecular signaling at postsynaptic density (PSD) in schizophrenia pathophysiology. The PSD that identifies the archetypal asymmetric synapse is a structure of approximately 300 nm in diameter, localized behind the neuronal membrane in the glutamatergic synapse, and constituted by more than 1000 proteins, including receptors, adaptors, kinases, and scaffold proteins. Furthermore, using FASS (fluorescence-activated synaptosome sorting) techniques, glutamatergic synaptosomes were isolated at around 70 nm, where the receptors anchored to the PSD proteins can diffuse laterally along the PSD and were stabilized by scaffold proteins in nanodomains of 50-80 nm at a distance of 20-40 nm creating "nanocolumns" within the synaptic button. In this context, PSD was envisioned as a multimodal hub integrating multiple signaling-related intracellular functions. Dysfunctions of glutamate signaling have been postulated in schizophrenia, starting from the glutamate receptor's interaction with scaffolding proteins involved in the N-methyl-D-aspartate receptor (NMDAR). Despite the emerging role of PSD proteins in behavioral disorders, there is currently no systematic review that integrates preclinical and clinical findings addressing dysregulated PSD signaling and translational implications for antipsychotic treatment in the aberrant postsynaptic function context. Here we reviewed a critical appraisal of the role of dysregulated PSD proteins signaling in the pathophysiology of schizophrenia, discussing how antipsychotics may affect PSD structures and synaptic plasticity in brain regions relevant to psychosis.


Assuntos
Antipsicóticos , Transtornos Psicóticos , Esquizofrenia , Humanos , Antipsicóticos/uso terapêutico , Esquizofrenia/metabolismo , Densidade Pós-Sináptica/metabolismo , Receptores de N-Metil-D-Aspartato
9.
J Alzheimers Dis ; 92(1): 241-260, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36744338

RESUMO

BACKGROUND: Phosphorylated cytoplasmic tau inclusions correlate with and precede cognitive deficits in Alzheimer's disease (AD). However, pathological tau accumulation and relationships to synaptic changes remain unclear. OBJECTIVE: To address this, we examined postmortem brain from 50 individuals with the full spectrum of AD (clinically and neuropathologically). Total tau, pTau231, and AMPA GluR1 were compared across two brain regions (entorhinal and middle frontal cortices), as well as clinically stratified groups (control, amnestic mild cognitive impairment, AD dementia), NIA-AA Alzheimer's Disease Neuropathologic Change designations (Not, Low, Intermediate, High), and Braak tangle stages (1-6). Significant co-existing pathology was excluded to isolate changes attributed to pathologic AD. METHODS: Synaptosomal fractionation and staining were performed to measure changes in total Tau, pTau231, and AMPA GluR1. Total Tau and pTau231 were quantified in synaptosomal fractions using Quanterix Simoa HD-X. RESULTS: Increasing pTau231 in frontal postsynaptic fractions correlated positively with increasing clinical and neuropathological AD severity. Frontal cortex is representative of early AD, as it does not become involved by tau tangles until late in AD. Entorhinal total tau was significantly higher in the amnestic mild cognitive impairment group when compared to AD, but only after accounting for AD associated synaptic changes. Alterations in AMPA GluR1 observed in the entorhinal cortex, but not middle frontal cortex, suggest that pTau231 mislocalization and aggregation in postsynaptic structures may impair glutamatergic signaling by promoting AMPA receptor dephosphorylation and internalization. CONCLUSION: Results highlight the potential effectiveness of early pharmacological interventions targeting pTau231 accumulation at the postsynaptic density.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/patologia , Proteínas tau/metabolismo , Densidade Pós-Sináptica/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Encéfalo/patologia , Disfunção Cognitiva/patologia
10.
Biol Psychiatry ; 93(11): 976-988, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36822932

RESUMO

BACKGROUND: Grooming dysfunction is a hallmark of the obsessive-compulsive spectrum disorder trichotillomania. Numerous preclinical studies have utilized SAPAP3-deficient mice for understanding the neurobiology of repetitive grooming, suggesting that excessive grooming is caused by increased metabotropic glutamate receptor 5 (mGluR5) activity in striatal direct- and indirect-pathway medium spiny neurons (MSNs). However, the MSN subtype-specific signaling mechanisms that mediate mGluR5-dependent adaptations underlying excessive grooming are not fully understood. Here, we investigated the MSN subtype-specific roles of the striatal signaling hub protein spinophilin in mediating repetitive motor dysfunction associated with mGluR5 function. METHODS: Quantitative proteomics and immunoblotting were utilized to identify how spinophilin impacts mGluR5 phosphorylation and protein interaction changes. Plasticity and repetitive motor dysfunction associated with mGluR5 action were measured using our novel conditional spinophilin mouse model in which spinophilin was knocked out from striatal direct-pathway MSNs and/or indirect-pathway MSNs. RESULTS: Loss of spinophilin only in indirect-pathway MSNs decreased performance of a novel motor repertoire, but loss of spinophilin in either MSN subtype abrogated striatal plasticity associated with mGluR5 function and prevented excessive grooming caused by SAPAP3 knockout mice or treatment with the mGluR5-specific positive allosteric modulator VU0360172 without impacting locomotion-relevant behavior. Biochemically, we determined that the spinophilin-mGluR5 interaction correlates with grooming behavior and that loss of spinophilin shifts mGluR5 interactions from lipid raft-associated proteins toward postsynaptic density proteins implicated in psychiatric disorders. CONCLUSIONS: These results identify spinophilin as a novel striatal signaling hub molecule in MSNs that cell subtype specifically mediates behavioral, functional, and molecular adaptations associated with repetitive motor dysfunction in psychiatric disorders.


Assuntos
Densidade Pós-Sináptica , Receptor de Glutamato Metabotrópico 5 , Animais , Camundongos , Corpo Estriado/metabolismo , Asseio Animal/fisiologia , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Densidade Pós-Sináptica/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Transdução de Sinais
11.
Mol Cell Neurosci ; 124: 103819, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36720293

RESUMO

The postsynaptic density (PSD) of excitatory synapses is built from a wide variety of scaffolding proteins, receptors, and signaling molecules that collectively orchestrate synaptic transmission. Seminal work over the past decades has led to the identification and functional characterization of many PSD components. In contrast, we know far less about how these constituents are assembled within synapses, and how this organization contributes to synapse function. Notably, recent evidence from high-resolution microscopy studies and in silico models, highlights the importance of the precise subsynaptic structure of the PSD for controlling the strength of synaptic transmission. Even further, activity-driven changes in the distribution of glutamate receptors are acknowledged to contribute to long-term changes in synaptic efficacy. Thus, defining the mechanisms that drive structural changes within the PSD are important for a molecular understanding of synaptic transmission and plasticity. Here, we review the current literature on how the PSD is organized to mediate basal synaptic transmission and how synaptic activity alters the nanoscale organization of synapses to sustain changes in synaptic strength.


Assuntos
Nanoestruturas , Sinapses , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Receptores de Glutamato/metabolismo , Densidade Pós-Sináptica/metabolismo , Plasticidade Neuronal/fisiologia
12.
Cell Res ; 32(10): 914-930, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35856091

RESUMO

In response to stimuli, the immediate early gene product Arc can acutely down-regulate synaptic strength by removing AMPA receptors (AMPARs) from synapses and thus regulate synaptic plasticity. How Arc, a scaffold protein, can specifically facilitate synaptic removal of AMPARs is unknown. We found that Arc directly antagonizes with PSD-95 in binding to TARPs, which are the auxiliary subunits of AMPARs. Arc, in a highly concentration-sensitive manner, acutely disperses TARPs from the postsynaptic density (PSD) condensate formed via phase separation. TARPs with the Ser residue in the "P-S-Y"-motif of its tail phosphorylated are completely refractory from being dispersed by Arc, suggesting that Arc cannot displace AMPARs from PSDs in active synapses. Conversely, strengthening the interaction between Arc and TARPs enhances Arc's capacity in weakening synapses. Thus, Arc can specifically and effectively modulate synaptic AMPAR clustering via modulating PSD phase separation. Our study further suggests that activity-dependent, bi-directional modulation of PSD condensate formation/dispersion represents a general regulatory mechanism for synaptic plasticity.


Assuntos
Densidade Pós-Sináptica , Receptores de AMPA , Proteína 4 Homóloga a Disks-Large/metabolismo , Plasticidade Neuronal , Densidade Pós-Sináptica/metabolismo , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Transmissão Sináptica
13.
J Cell Biol ; 221(8)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35819332

RESUMO

IRSp53 (aka BAIAP2) is a scaffold protein that couples membranes with the cytoskeleton in actin-filled protrusions such as filopodia and lamellipodia. The protein is abundantly expressed in excitatory synapses and is essential for synapse development and synaptic plasticity, although with poorly understood mechanisms. Here we show that specific multivalent interactions between IRSp53 and its binding partners PSD-95 or Shank3 drive phase separation of the complexes in solution. IRSp53 can be enriched to the reconstituted excitatory PSD (ePSD) condensates via bridging to the core and deeper layers of ePSD. Overexpression of a mutant defective in the IRSp53/PSD-95 interaction perturbs synaptic enrichment of IRSp53 in mouse cortical neurons. The reconstituted PSD condensates promote bundled actin filament formation both in solution and on membranes, via IRSp53-mediated actin binding and bundling. Overexpression of mutants that perturb IRSp53-actin interaction leads to defects in synaptic maturation of cortical neurons. Together, our studies provide potential mechanistic insights into the physiological roles of IRSp53 in synapse formation and function.


Assuntos
Actinas , Proteínas do Tecido Nervoso , Densidade Pós-Sináptica , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Camundongos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal , Neurônios/metabolismo , Densidade Pós-Sináptica/metabolismo , Pseudópodes/genética , Pseudópodes/metabolismo , Sinapses/genética , Sinapses/metabolismo
14.
Cell Death Dis ; 13(5): 437, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35513389

RESUMO

Aberrantly synchronized neuronal discharges in the brain lead to epilepsy, a devastating neurological disease whose pathogenesis and mechanism are unclear. SAPAP3, a cytoskeletal protein expressed at high levels in the postsynaptic density (PSD) of excitatory synapses, has been well studied in the striatum, but the role of SAPAP3 in epilepsy remains elusive. In this study, we sought to investigate the molecular, cellular, electrophysiological and behavioral consequences of SAPAP3 perturbations in the mouse hippocampus. We identified a significant increase in the SAPAP3 levels in patients with temporal lobe epilepsy (TLE) and in mouse models of epilepsy. In addition, behavioral studies showed that the downregulation of SAPAP3 by shRNA decreased the seizure severity and that the overexpression of SAPAP3 by recombinant SAPAP3 yielded the opposite effect. Moreover, SAPAP3 affected action potentials (APs), miniature excitatory postsynaptic currents (mEPSCs) and N-methyl-D-aspartate receptor (NMDAR)-mediated currents in the CA1 region, which indicated that SAPAP3 plays an important role in excitatory synaptic transmission. Additionally, the levels of the GluN2A protein, which is involved in synaptic function, were perturbed in the hippocampal PSD, and this perturbation was accompanied by ultrastructural morphological changes. These results revealed a previously unknown function of SAPAP3 in epileptogenesis and showed that SAPAP3 may represent a novel target for the treatment of epilepsy.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Animais , Epilepsia/metabolismo , Epilepsia do Lobo Temporal/patologia , Hipocampo/metabolismo , Humanos , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Densidade Pós-Sináptica/metabolismo , Densidade Pós-Sináptica/patologia , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Convulsões/metabolismo , Sinapses/metabolismo
15.
Int J Mol Sci ; 23(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35457207

RESUMO

The postsynaptic density (PSD) is a massive protein complex, critical for synaptic strength and plasticity in excitatory neurons. Here, the scaffolding protein PSD-95 plays a crucial role as it organizes key PSD components essential for synaptic signaling, development, and survival. Recently, variants in DLG4 encoding PSD-95 were found to cause a neurodevelopmental disorder with a variety of clinical features including intellectual disability, developmental delay, and epilepsy. Genetic variants in several of the interaction partners of PSD-95 are associated with similar phenotypes, suggesting that deficient PSD-95 may affect the interaction partners, explaining the overlapping symptoms. Here, we review the transmembrane interaction partners of PSD-95 and their association with neurodevelopmental disorders. We assess how the structural changes induced by DLG4 missense variants may disrupt or alter such protein-protein interactions, and we argue that the pathological effect of DLG4 variants is, at least partly, exerted indirectly through interaction partners of PSD-95. This review presents a direction for functional studies to elucidate the pathogenic mechanism of deficient PSD-95, providing clues for therapeutic strategies.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Proteína 4 Homóloga a Disks-Large/genética , Proteína 4 Homóloga a Disks-Large/metabolismo , Humanos , Deficiência Intelectual/metabolismo , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Fenótipo , Densidade Pós-Sináptica/metabolismo , Sinapses/metabolismo
16.
PLoS Biol ; 20(3): e3001503, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35312684

RESUMO

Recent advances in imaging technology have highlighted that scaffold proteins and receptors are arranged in subsynaptic nanodomains. The synaptic membrane-associated guanylate kinase (MAGUK) scaffold protein membrane protein palmitoylated 2 (MPP2) is a component of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-associated protein complexes and also binds to the synaptic cell adhesion molecule SynCAM 1. Using superresolution imaging, we show that-like SynCAM 1-MPP2 is situated at the periphery of the postsynaptic density (PSD). In order to explore MPP2-associated protein complexes, we used a quantitative comparative proteomics approach and identified multiple γ-aminobutyric acid (GABA)A receptor subunits among novel synaptic MPP2 interactors. In line with a scaffold function for MPP2 in the assembly and/or modulation of intact GABAA receptors, manipulating MPP2 expression had effects on inhibitory synaptic transmission. We further show that GABAA receptors are found together with MPP2 in a subset of dendritic spines and thus highlight MPP2 as a scaffold that serves as an adaptor molecule, linking peripheral synaptic elements critical for inhibitory regulation to central structures at the PSD of glutamatergic synapses.


Assuntos
Proteínas de Membrana , Densidade Pós-Sináptica , Proteínas de Membrana/metabolismo , Densidade Pós-Sináptica/metabolismo , Receptores de AMPA/metabolismo , Receptores de GABA-A , Sinapses/metabolismo
17.
J Phys Chem B ; 126(8): 1734-1741, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35171623

RESUMO

The SynGAP/PSD-95 binary protein system serves as a simple mimicry of postsynaptic densities (PSDs), which are protein assemblies based largely on liquid-liquid phase separation (LLPS), that are located underneath the plasma membrane of excitatory synapses. Surprisingly, the LLPS of the SynGAP/PSD-95 system is much more pressure sensitive than typical folded states of proteins or nucleic acids. It was found that phase-separated SynGAP/PSD-95 droplets dissolve into a homogeneous solution at a pressure of tens to hundred bar. Since organisms in the deep sea are exposed to pressures of up to ∼1000 bar, this observation suggests that deep-sea organisms must counteract the high pressure sensitivity of PSDs to avoid neurological impairment. We demonstrate here that the compatible osmolyte trimethylamine-N-oxide (TMAO) as well as macromolecular crowding agents at moderate concentrations can mitigate the deleterious effect of pressure on SynGAP/PSD-95 droplet stability, extending stable LLPS up to almost a kbar level. Moreover, the formation of SynGAP/PSD-95 droplets is a very rapid process that can be switched on and off in seconds. In contrast with the marked effects of the cosolutes on droplet stability, at the cosolutes' respective biologically relevant concentrations, their impact on the phase transformation kinetics is rather small. Only a high TMAO concentration results in a significant kinetic retardation of LLPS. Taken together, these findings offer new biophysical insights into the neurological effects of hydrostatic pressure. In particular, our results indicate how pressure-induced neurological disorders might be alleviated by upregulating certain cosolutes in the cellular milieu.


Assuntos
Densidade Pós-Sináptica , Proteínas , Proteína 4 Homóloga a Disks-Large/metabolismo , Cinética , Transição de Fase , Densidade Pós-Sináptica/metabolismo , Proteínas/metabolismo
18.
Nat Commun ; 13(1): 798, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35145085

RESUMO

Mutations in the putative glutamatergic synapse scaffolding protein SAP97 are associated with the development of schizophrenia in humans. However, the role of SAP97 in synaptic regulation is unclear. Here we show that SAP97 is expressed in the dendrites of granule neurons in the dentate gyrus but not in the dendrites of other hippocampal neurons. Schizophrenia-related perturbations of SAP97 did not affect CA1 pyramidal neuron synapse function. Conversely, these perturbations produce dramatic augmentation of glutamatergic neurotransmission in granule neurons that can be attributed to a release of perisynaptic GluA1-containing AMPA receptors into the postsynaptic densities of perforant pathway synapses. Furthermore, inhibiting SAP97 function in the dentate gyrus was sufficient to impair contextual episodic memory. Together, our results identify a cell-type-specific synaptic regulatory mechanism in the dentate gyrus that, when disrupted, impairs contextual information processing in rats.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Giro Denteado/fisiologia , Proteínas de Membrana/genética , Memória Episódica , Mutação , Esquizofrenia/genética , Sinapses/metabolismo , Animais , Feminino , Hipocampo/metabolismo , Masculino , Neurônios/metabolismo , Densidade Pós-Sináptica/metabolismo , Células Piramidais/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/metabolismo , Esquizofrenia/metabolismo , Transmissão Sináptica/fisiologia
19.
PLoS Comput Biol ; 18(1): e1009758, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35041658

RESUMO

The postsynaptic density (PSD) is a dense protein network playing a key role in information processing during learning and memory, and is also indicated in a number of neurological disorders. Efforts to characterize its detailed molecular organization are encumbered by the large variability of the abundance of its constituent proteins both spatially, in different brain areas, and temporally, during development, circadian rhythm, and also in response to various stimuli. In this study we ran large-scale stochastic simulations of protein binding events to predict the presence and distribution of PSD complexes. We simulated the interactions of seven major PSD proteins (NMDAR, AMPAR, PSD-95, SynGAP, GKAP, Shank3, Homer1) based on previously published, experimentally determined protein abundance data from 22 different brain areas and 42 patients (altogether 524 different simulations). Our results demonstrate that the relative ratio of the emerging protein complexes can be sensitive to even subtle changes in protein abundances and thus explicit simulations are invaluable to understand the relationships between protein availability and complex formation. Our observations are compatible with a scenario where larger supercomplexes are formed from available smaller binary and ternary associations of PSD proteins. Specifically, Homer1 and Shank3 self-association reactions substantially promote the emergence of very large protein complexes. The described simulations represent a first approximation to assess PSD complex abundance, and as such, use significant simplifications. Therefore, their direct biological relevance might be limited but we believe that the major qualitative findings can contribute to the understanding of the molecular features of the postsynapse.


Assuntos
Modelos Neurológicos , Proteínas do Tecido Nervoso , Densidade Pós-Sináptica , Sinapses , Simulação por Computador , Humanos , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Densidade Pós-Sináptica/metabolismo , Densidade Pós-Sináptica/fisiologia , Sinapses/química , Sinapses/metabolismo
20.
Biophys J ; 121(1): 157-171, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34637756

RESUMO

The assembly of functional biomolecular condensates often involves liquid-liquid phase separation (LLPS) of proteins with multiple modular domains, which can be folded or conformationally disordered to various degrees. To understand the LLPS-driving domain-domain interactions, a fundamental question is how readily the interactions in the condensed phase can be inferred from interdomain interactions in dilute solutions. In particular, are the interactions leading to LLPS exclusively those underlying the formation of discrete interdomain complexes in homogeneous solutions? We address this question by developing a mean-field LLPS theory of two stoichiometrically constrained solute species. The theory is applied to the neuronal proteins SynGAP and PSD-95, whose complex coacervate serves as a rudimentary model for neuronal postsynaptic densities (PSDs). The predicted phase behaviors are compared with experiments. Previously, a three SynGAP/two PSD-95 ratio was determined for SynGAP/PSD-95 complexes in dilute solutions. However, when this 3:2 stoichiometry is uniformly imposed in our theory encompassing both dilute and condensed phases, the tie-line pattern of the predicted SynGAP/PSD-95 phase diagram differs drastically from that obtained experimentally. In contrast, theories embodying alternate scenarios postulating auxiliary SynGAP-PSD-95 as well as SynGAP-SynGAP and PSD-95-PSD-95 interactions, in addition to those responsible for stoichiometric SynGAP/PSD-95 complexes, produce tie-line patterns consistent with experiment. Hence, our combined theoretical-experimental analysis indicates that weaker interactions or higher-order complexes beyond the 3:2 stoichiometry, but not yet documented, are involved in the formation of SynGAP/PSD-95 condensates, imploring future efforts to ascertain the nature of these auxiliary interactions in PSD-like LLPS and underscoring a likely general synergy between stoichiometric, structurally specific binding and stochastic, multivalent "fuzzy" interactions in the assembly of functional biomolecular condensates.


Assuntos
Fenômenos Bioquímicos , Densidade Pós-Sináptica , Proteína 4 Homóloga a Disks-Large/metabolismo , Neurônios/metabolismo , Densidade Pós-Sináptica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...